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Chapter G03 — Multivariate Methods

Note. Please refer to the Users’ Note for your implementation to check that a routine is available.

Routine Mark of

Name Introduction Purpose

GO3AAF 14 Performs principal component analysis

GO3ACF 14 Performs canonical variate analysis

GO3ADF 14 Performs canonical correlation analysis

GO3BAF 15 Computes orthogonal rotations for loading matrix, generalized orthomax
criterion

GO3BCF 15 Computes Procrustes rotations

GO3CAF 15 Computes the maximum likelihood estimates of the parameters of
a factor analysis model, factor loadings, communalities and residual
correlations

GO3CCF 15 Computes factor score coefficients (for use after GO3CAF)

GO3DAF 15 Computes test statistic for equality of within-group covariance matrices
and matrices for discriminant analysis

GO3DBF 15 Computes Mahalanobis squared distances for group or pooled variance-
covariance matrices (for use after GO3DAF)

GO3DCF 15 Allocates observations to groups according to selected rules (for use after
GO03DAF)

GO3EAF 16 Computes distance matrix

GO3ECF 16 Hierarchical cluster analysis

GO3EFF 16 K-means cluster analysis

GO3EHF 16 Constructs dendrogram (for use after GO3ECF)

GO3EJF 16 Computes cluster indicator variable (for use after GO3ECF)

GO3FAF 17 Performs principal co-ordinate analysis, classical metric scaling

GO3FCF 17 Performs non-metric (ordinal) multidimensional scaling

GO3ZAF 15 Produces standardized values (2-scores) for a data matrix
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1 Scope of the Chapter

This chapter is concerned with methods for studying multivariate data. A multivariate data set consists
of several variables recorded on a number of objects or individuals. Multivariate methods can be classified
as those that seek to examine the relationships between the variables (e.g. principal components), known
as variable-directed methods, and those that seek to examine the relationships between the objects (e.g.
cluster analysis), known as individual-directed methods.

Multiple regression is not included in this chapter as it involves the relationship of a single variable, known
as the response variable, to the other variables in the data set, the explanatory variables. Routines for
multiple regression are provided in Chapter G02.

2 Background to the Problems
2.1 Variable-directed Methods

Let the n by p data matrix consist of p variables, z;,z,,...,z,, observed on n objects or individuals.
Variable-directed methods seek to examine the linear relationships between the p variables with the aim
of reducing the dimensionality of the problem. There are different methods depending on the structure
of the problem. Principal component analysis and factor analysis examine the relationships between all
the variables. If the individuals are classified into groups then canonical variate analysis examines the
between group structure. If the variables can be considered as coming from two sets then canonical
correlation analysis examines the relationships between the two sets of variables. All four methods are
based on an eigenvalue decomposition or a singular value decomposition (SVD) of an appropriate matrix.

The above methods may reduce the dimensionality of the data from the original p variables to a smaller
number, k, of derived variables that adequately represent the data. In general these k derived variables
will be unique only up to an orthogonal rotation. Therefore it may be useful to see if there exists suitable
rotations of these variables that lead to a simple interpretation of the new variables in terms of the
original variables.

2.1.1 Principal component analysis

Principal component analysis finds new variables which are linear combinations of the p observed variables
so that they have maximum variation and are orthogonal (uncorrelated).

Let S be the p by p variance-covariance matrix of the n by p data matrix. A vector a; of length p is
found such that:
aTSa, is maximised subject to afa, = 1.
P
The variable z; = Z a,;z; is known as the first principal component and gives the linear combination of

i=1
14

the variables that gives the maximum variation. A second principal component, z, = Z a,;x;, is found
i=1
such that:
al Sa, is maximised subject to afa, =1andala, = 0.

This gives the linear combination of variables, orthogonal to the first principal component, that gives the
maximum variation. Further principal components are derived in a similar way.

The vectors a;, for i = 1,2,.. ., p are the eigenvectors of the matrix S and associated with each eigenvector
is the eigenvalue, 7;-“’. The value of 4?2/ 27,2 gives the proportion of variation explained by the ith

principal component. Alternatively the a; can be considered as the right singular vectors in a SVD of a
scaled mean centred data matrix. The singular values of the SVD are the 7;-values.

Often fewer than p dimensions (principal components) are needed to represent most of the variation in
the data. A test on the smaller eigenvalues can be used to investigate the number of dimensions needed.

The values of the principal component variables for the individuals are known as the principal component
scores. These can be standardized so that the variance of these scores for each principal component is 1.0
or equal to the corresponding eigenvalue. The principal component scores correspond to the left-hand
singular vectors in the SVD.
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2.1.2 Factor analysis

Let the p variables have variance-covariance matrix £. The aim of factor analysis is to account for the
covariances in these p variables in terms of a smaller number, k, of hypothetical variables, or factors,
fis fas -, fi- These are assumed to be independent and to have unit variance. The relationship between
the observed variables and the factors is given by the model

k
xi:Z)\ijfj+ei 1=1,2,...,p
ij=1

where A;;, for i = 1,2,...,p, j = 1,2,...,k, are the factor loadings and e;, for i = 1,2,...,p, are
independent random variables with variances 9,. These represent the unique component of the variation
of each observed variable. The proportion of variation for each variable accounted for by the factors is
known as the communality.

The model for the variance-covariance matrix, X, can then be written as:
L=AAT + ¥,

where A is the matrix of the factor loadings, A;., and ¥ is a diagonal matrix of the unique variances ;.

ij)
If it is assumed that both the k factors and the e; follow independent Normal distributions then the
parameters of the model, A and ¥, can be estimated by maximum likelihood as described by Lawley
and Maxwell [7]. The computation of the maximum likelihood estimates is an iterative procedure which

involves computing the eigenvalues and eigenvectors of the matrix
S* = ‘I,—I/QS‘I,—I/Z,

where S is the sample variance-covariance matrix. Alternatively the SVD of the matrix RU~!/? can be
used, where RTR = S. When convergence has been achieved the estimates A, of A, are obtained by
scaling the eigenvectors of S*. The use of maximum likelihood estimation means that likelihood ratio
tests can be constructed to test for the number of factors required.

Having found the estimates of the parameters of the model, the estimates of the values of the factors
for the individuals, the factorscores, can be computed. These involve the calculation of the factor score
coefficients. Two common methods of computing factor score coefficients are the regression method and
Bartlett’s method. Bartlett’s method gives unbiased estimates of the factor scores while estimates from
the regression method are biased but have smaller variance than those from Bartlett’s method; see Lawley
and Maxwell [7].

2.1.3 Canonical variate analysis

If the individuals can be classified into one of g groups then canonical variate analysis finds the linear
combinations of the p variables that maximize the ratio of the between group variation to the within-
group variation. These variables are known as canonical variates. As the canonical variates provide
discrimination between the groups the method is also known as canonical discrimination.

The canonical variates can be calculated from the eigenvectors of the within group sums of squares and
cross-products matrix or from the SVD of the matrix

v =qTQ,

where @, is an orthogonal matrix that defines the groups and @, is the first p columns of the orthogonal
matrix () from the QR decompostion of the data matrix with the variable means subtracted. If the data
matrix is not of full rank the Q_ matrix can be obtained from a SVD. If the SVD of V is

vV =U,AU],

then the non-zero elements (6; > 0) of the diagonal matrix A are the canonical correlations. The largest
8, is called the first canonical correlation and associated with it is the first canonical variate.

The eigenvalues, 'y?, of the within-group sums of squares matrix are given by:

2o b
i= 1
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and the value of 7, = v2/ Z 73 gives the proportion of variation explained by the ith canonical variate.
The values of the m; give an indication as to how many canonical variates are needed to adequately
describe the data, i.e., the dimensionality of the problem. The number of dimensions can be investigated
by means of a test on the smaller canonical correlations.

The canonical variate loadings and the relationship between the original variables and the canonical
variates are calculated from the matrix U,. This matrix is scaled so that the canonical variates have unit
variance.

2.1.4 Canonical correlation analysis

If the p variables can be considered as coming from two sets then canonical correlation analysis finds
linear combinations of the variables in each set, known as canonical variates, such that the correlations
between corresponding canonical variates for the two sets are maximized. Let the two sets of variables
be denoted by z and y with p, and p, variables in each set respectively. Let the variance-covariance of

the data set be S S
— zx Ty
s=| & &)

vz Pyy
and let
r= Sy‘y1 SWS';x1 Sey
then the canonical correlations can be calculated from the eigenvalues of the matrix . Alternatively the

canonical correlations can be calculated by means of a SVD of the matrix
V=Q:Q,

where @, is the first p, columns of the orthogonal matrix @ from the QR decompostion of the z-
variables in the data matrix and @, is the first p, columns of the ) matrix of the QR decomposition
of the y-variables in the data matrix. In both cases the variable means are subtracted before the QR
decomposition is computed. If either sets of variables is not of full rank an SVD can be used instead of
the QR decomposition. If the SVD of V is

vV =U,AU;,

then the non-zero elements (6; > 0) of the diagonal matrix A are the canonical correlations. The largest
6; is called the first canonical correlation and associated with it is the first canonical variate. The

eigenvalues, 7?2, of the matrix T are given by

62
1+ 67

¥ =

The value of m; = 'y? / Z 7,-2 gives the proportion of variation explained by the ith canonical variate. The

values of the 7, give an indication as to how many canonical variates are needed to adequately describe
the data, i.e., the dimensionality of the problem; this can also be investigated by means of a test on the
smaller values of the 7.

The relationship between the canonical variables and the original variables, the canonical variate loadings,
can be computed from the U, and U, matrices.

2.1.5 Rotations
There are two principal reasons for using rotations. Either

(a) simplifying the structure to aid interpretation of derived variables, or
(b) comparing two or more data sets or sets of derived variables.

The most common type of rotations used for (a) are orthogonal rotations. If A is the p by k loading matrix
from a variable-directed multivariate method, then the rotations are selected such that the elements, /\:-'j,
of the rotated loading matrix, A*, are either relatively large or small. The rotations may be found by
minimizing the criterion

V=

kE p
i=

k P 2
Y- -:;Z (Z(A:j)“’)
j=1 \i=1

1i=1
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where the constant, v, gives a family of rotations, with ¥ = 1 giving varimax rotations and v = 0 giving
quartimax rotations.

For (b) Procrustes rotations are used. Let A and B be two | by m matrices, which can be considered as
representing [ points in m dimensions. One example is if A is the loading matrix from a variable-directed
multivariate method and B is a hypothesised pattern matrix. In order to try to match the points in A
and B there are three steps:

(i) translate so that centroids of both matrices are at the origin,
(i1) find a rotation that minimizes the sum of squared distances between corresponding points of the
matrices,
(ii1) scale the matrices.

For a more detailed description, see Krzanowski [6].

2.2 Individual-directed Methods

While dealing with the same n by p data matrix as variable-directed methods the emphasis is the n objects
or individuals rather than the p variables. The methods are generally based on an n by n distance or
dissimilarity matrix such that the (k, j)th element gives a measure of how ‘far apart’ individual k¥ and j
are. Alternatively, a similarity matrix can be used which measures how ‘close’ individuals are. The form
of the measure of distance or similarity will depend upon the form of the p variables. For continuous
variables it is usually assumed that some form of Euclidean distance is suitable. That is, for z;; and
z;; measured for individuals k¥ and j on variable i respectively, the contribution to distance between
individuals k and j from variable i is given by

(zgi — zji)z'

Often there will be a need to scale the variables to produce satisfactory distances. For discrete variables
there are various measures of similarity or distance that can easily be computed. For example, for binary
data a measure of similarity could be

1 - if the individuals take the same value,

0 — otherwise.
Given a measure of distance between individuals there are three basic tasks that can be performed.

(1) Group the individuals; that is, collect the individuals into groups so that those within a group are
closer to each other than they are to members of another group.

(2) Classify individuals; that is, if some individuals are known to come from certain groups allocate
individuals whose group membership is unknown to the nearest group.

(3) Map the individuals; that is, produce a multidimensional diagram in which the distances on the
diagram represent the distances between the individuals.

In the above, (1) leads to cluster analysis, (2) leads to discriminant analysis and (3) leads to scaling
methods.

2.2.1 Hierarchical cluster analysis

Approaches for cluster analysis can be classified into two types: hierarchical and non-hierarchical.
Hierarchical cluster analysis produces a series of overlapping groups or clusters ranging from separate
individuals to one single cluster. For example five individuals could be hierarchically clustered as follows.

Step1 (1) (2) (3) (4) (5

Step2  (12)  (34) (5)

Step 3 (1,2) (3,4,5)

Step 4 (1,2,3,4,5)
The clusters at a level are constructed from the clusters at a previous level. There are two basic approaches
to hierarchical cluster analysis: agglomerative methods which build up clusters starting from individuals

until there is only one cluster, or divisive methods which start with a single cluster and split clusters
until the individual level is reached. This chapter contains the more common agglomerative methods.
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The stages in a hierarchical cluster analysis are usually as follows.

(a) Form a distance matrix
(b) Use selected criterion to form hierarchy.
(¢c) Print cluster information in the form of a dendrogram or use information to form a set of clusters.

These three stages will be considered in turn.

(a) Form distance matrix.

(b)

For the n by p data matrix X, a general measure of the distance between object j and object &,

dj, is:

p o
djp = (Z D(zji/si’zki/si)> )
i=1

where z;; and z;; are the (j,i)th and (k,7)th elements of X, s; is a standardization for the ith
variable and D(u, v) is a suitable function. Three common distances for continuous variables are:

' (i) Euclidean distance: D(u,v) = (u—v)? and & = 1.

(ii) Euclidean squared distance: D(u,v) = (v —v)? and a = 1.

(iii) Absolute distance (city block metric): D(u,v) = |u —v| and o = L.

The common standardisations are the standard deviation and the range. For dichotomous variables
there are a number of different measures (see Krzanowski [6] and Everitt [2]); these are usually easy
to compute. If the individualsin a cluster analysis are themselves variables, then a suitable distance

measure will be based on the correlation coefficient for continuous variables and contingency table
statistics for discrete data.

Form Hierarchy

Given a distance matrix for the n individuals, an agglomerative clustering methods produces a
hierarchical tree by starting with n clusters each with a single individual and then at each of n — 1
stages merging two clusters to form a larger cluster until all individuals are in a single cluster. At
each stage the two clusters that are nearest are merged to form a new cluster and a new distance
matrix is computed for the reduced number of clusters.

Methods differ as to how the distances between the new cluster and other clusters are computed.
For three clusters 7, j and k let n;, n; and n; be the number of objects in each cluster and let d,;,
d;, and d;p be the distances between the clusters. If clusters j and k be merged to give cluster jk,
then the distance from cluster i to cluster jk, d; ;;, can be computed in the following ways.

(a) Single Link or nearest neighbour : d; ;; = min(d,;, d;;).

(b) Complete Link or furthest neighbour : d; ;;, = max(d;;,d;;).

. - N n
(c) Group average : d; ;) = . dij + 7y d;j-

(d) Centroid : dt]k = n]'::iﬂk d'] + ﬂj’:-knk dik - r%d]k.
(f) Minimum variance : d; ;; = [(n; + n;)d;; + (n; + ng)d; — nyd; ]/ (n; +n; +ny)

For further details, see Everitt [2] or Krzanowski [6].

Produce Dendrogram and Clusters

Hierarchical cluster analysis can be represented by a tree that shows at which distance the clusters
merge. Such a tree is known as a dendrogram; see Everitt [2] and Krzanowski [6].
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A simple example is

S - -

—

-

[y
N
w
-
w

Individuals

Figure 1

The end-points of the dendrogram represent the individuals that have been clustered.

Alternatively the information from the tree can be used to produced either a chosen number of clusters
or the clusters that exist at a given distance. The latter is equivalent to taking the dendrogram and
drawing a line across at a given distance to produce clusters.

2.2.2 Non-hierarchical clustering

Non-heirarchical cluster analysis usually forms a given number of clusters from the data. There is no
requirement that if first £ — 1 and then k clusters were requested then the k — 1 clusters would be formed
from the k clusters.

Most non-hierarchical methods of cluster analysis seek to partition the set of individuals into a number
of clusters so as to optimise a criterion. The number of clusters is usually specified prior to the analysis.
One commonly used criterion is the within-cluster sum of squares. Given n individuals with p variables
measured on each individual, z; fori =12,...,n, j = 1,2,...p, the within-cluster sum of squares for K

clusters is:
K 4
= )2
SSe=2_ 2.2 (o — )",
k=1i€S) j=1
where S, is the set of objects in the kth cluster and z,; is the mean for the variable j over cluster k.
Starting with an initial allocation of individuals to clusters the method then seeks to minimise SS, by a
series of re-allocations. This is often known as K-means clustering.

2.2.3 Discriminant analysis

Discriminant analysis is concerned with the allocation of objects to n, groups on the basis of observations
on those objects using an allocation rule. This rule is computed from observations coming from a training
set in which group membership is known. The allocation rule is based on the distance between the object
and an estimate of the location of the groups. If p variables are observed and the vector of means for the
Jjth group in the training set are z; then the usual measure of the distance of an observation, z,, from
the jth group mean is given by Mahalanobis distance:

2 _ = \T g-1 =
Di; = (z — ‘”j) S (zy — -"j),
where S, is either the within-group variance-covariance matrix, S;, for the n; objects in the jth group,
or a pooled variance-covariance matrix, S, computed from all n objects from all groups where

Z}'il(nj - l)Sj

§= (n—mny)
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If the within group variance-covariance matrices can be assumed to be equal then the pooled variance-
covariance matrix can be used. This assumption can be tested using the test statistic:

G=C|(n—-n,)logl|S| —Z(nj - Dlogl|S;| |,

j=1

where

22+3p—1 [<& 1 1
C=1- -

For large n, G is approximately distributed as a x? variable with %p(p + 1)(n, — 1) degrees of freedom;
see Morrison [8].

In addition to the distances a set of prior probabilities of group membership, T, forj=1,2,...,n 4> May
be used. The prior probabilities reflect the user’s view as to the likelihood of the objects coming from
the different groups.

It is generally assumed that the p variables follow a multivariate Normal distribution with, for the jth
group, mean 4, and variance-covariance matrix ;. If p(z|p;, X;) is the probability of observing the
observation z; from group j, then the posterior probability of belonging to group j is

P(j|$k,lij, Ej) x P(%U‘j» Ej)“'j-
An observation is allocated to the group with the highest posterior probability.

In the estimative approach to discrimination the parameters p; and ¥; in p(jlzg, ,uj,Z)j) are replaced by
their estimates calculated from the training set. If it is assumed that the within-group variance-covariance
matrices are equal then the linear discriminant function is obtained; otherwise if it is assumed that the
variance-covariance matrices are unequal then the quadratic discriminant function is obtained.

In the Bayesian predictive approach a non-informative prior distribution is used for the parameters giving
the posterior distribution for the parameters from the training set, X,, of, p(u]-,Elet). A predictive
distribution is then obtained by integrating p(j|zy, p;, £;)p(1;, Z;|X) over the parameter space. This
predictive distribution, p(z;|X,), then replaces p(z;|u;, ;) to give

P(ﬂ“’kal»‘j, Ej) x P(-’Ck|Xt)7rj-

In addition to allocating the objects to groups an atypicality index for each object and for each group
can be computed. This represents the probability of obtaining an observation more typical of the group
than that observed. A high value of the atypicality index for all groups indicates that the observation
may in fact come from a group not represented in the training set.

Alternative approaches to discrimination are the use of canonical variates and logistic discrimination.
Canonical variate analysis is described above and as it seeks to find the directions that best discriminate
between groups these directions can also be used to allocate further observations. This can be viewed as
an extension of Fisher’s linear discriminant function. This approach does not assume that the data is
Normally distributed, but Fisher’s linear discriminant function may not perform well on non-Normal data.
In the case of two groups, logistic regression can be performed with the response variable indicating the
group allocation and the variables in the discriminant analysis being the explanatory variables. Allocation
can then be made on the basis of the fitted response value. This is known as logistic discrimination and
can be shown to be valid for a wide range of distributional assumptions.

2.2.4 Scaling methods

Scaling methods seek to represent the observed dissimilarities or distances between objects as distances
between points in Euclidean space. For example if the distances between objects A, B and C were
3, 4 and 5 the distances could be represented exactly by three points in two-dimensional space. Only
their relative positions would be important, the whole configuration of points could be rotated or shifted
without effecting the distances between the points. If a one-dimensional representation was required the
‘best’ representation might give distances of 2%, 3% and 5%, which may be an adequate representation. If
the distances were 3, 4 and 8 then these distances could not be exactly represented in Euclidean space
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even in two dimensions; the best representation being the three points in a straight line giving distances
3,4and 7.

In practice the user of scaling methods has to decide upon the number of dimensions in which the data
is to be represented. The smaller the number the easier it will be to assimilate the information. The
chosen number of dimensions needs to give an adequate representation of the data but will often not give
an exact representation because either the number of chosen dimensions is too small or the data cannot
be represented in Euclidean space.

Two basic methods are available depending on the nature of the dissimilarities or distances being analysed.
If the distances can be assumed to satisfy the metric inequality
dij <di +dyj,

then the distances can be represented exactly by points in Euclidean space and the technique known as
metric scaling, classical scaling or principal coordinate analysis can be used. This technique involves
the computing of the eigenvalues of a matrix derived from the distance matrix. The eigenvectors
corresponding to the k largest positive eigenvalues gives the best k dimensions in which to represent the
objects. If there are negative eigenvalues then the distance matrix cannot be represented in Euclidean
space.

Instead of the above approach of requiring the distances from the points to match the distances from
the objects as closely as possible sometimes only a rank-order equivalence is required. That is, the ith
largest distance between objects should, as far as possible, be represented by the ith largest distance
between points. This would be appropriate when the dissimilarities are based on subjective rankings.
For example if the objects were foods the a number of judges rank the foods for different qualities such
as taste and texture the resulting distances would not necessarily obey the metric inequality but the
rank order would be significant. Alternatively, by relaxing the requirement from matching distances to
rank order equivalence only, the number of dimensions required to represent the distance matrix may be
decreased. The requirement of rank-order equivalence leads to non-metric or ordinal multidimensional
scaling. The criterion used to measure the closeness of the fitted distance matrix to the observed distance
matrix is known as STRESS which is given by

Y Yisi(dy - di)?

)

where d?j is the Euclidean squared distance between the computed points 7 and j and d;]- is the fitted
i that is, d; is
monotonic relative to d;; and is obtained from d;; with the smallest number of changes. Thus STRESS
is a measure of by how much the set of points preserve the order of the distances in the original distance
matrix and non-metric multidimensional scaling seeks to find the set of points that minimize the STRESS.

distance obtained when d;j is monotonically regressed on the observed distances d

3 Recommendations on Choice and Use of Available Routines

Note. Refer to the Users’ Note for your implementation to check that a routine is available.

The following routines perform the computations for variable-directed methods.
GO03AAF computes the principal components from an input data matrix. Results include tests on the
eigenvalues, the principal component loadings, and the principal component scores.

GO03ACF computes a canonical variate analysis from an input data matrix. Results include canonical
correlations, tests on eigenvalues, canonical variate means, and canonical variate loadings.

GO03ADF computes a canonical correlation analysis from a input data matrix. Results include tests on
the eigenvalues and canonical variates loadings.

GO03CAF computes maximum likelihood estimates of the parameters of the factor analysis model.
GO03CCF  computes the factor score coeflicients from the results of GO3CAF.
GO03BAF computes orthogonal rotations, including varimax and equimax rotations.

GO03BCF computes Procrustes rotations.
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The following routines perform the computations for individual-directed methods.
Discriminant Analysis

GO03DAF computes matrices for use in discriminant analysis and test statistics for use in testing the
equality of within group variance-covariance matrices.

GO3DBF computes Mahalanobis distances from the results of GO3DAF.

GO3DCF allocates observations to groups using allocation rules as described above. An atypicality
index can also be computed. GO3DCF uses the results of GO3DAF.

Note also that GO2GBF will fit a logistic regression model and can be used for logistic discrimination.
Cluster Analysis

GO3EAF computes a distance matrix.

GO3ECF computes heirarchical cluster analysis from a given distance matrix.
GO3EHF computes a dendrogram from the results of GO3ECF.

GO3EJF  computes a set of clusters from the results of GO3ECF.

GO3EFF computes non-heirarchical (K-means) cluster analysis.
Scaling Methods

GO3FAF  computes a principal co-ordinate analysis.

GO03FCF  computes non-metric multi-dimensional scaling.
The following service routine is also available:

GO03ZAF computes a matrix of standardized variables from an input data matrix.

4 References

[1] Chatfield C and Collins A J (1980) Introduction to Multivariate Analysis Chapman and Hall
[2] Everitt B S (1974) Cluster Analysis Heinemann
[3] Gnanadesikan R (1977) Methods for Statistical Data Analysis of Multivariate Observations Wiley

[4] Hammarling S (1985) The singular value decomposition in multivariate statistics SIGNUM Newsl.
20 (3) 2-25

[5] Kendall M G and Stuart A (1976) The Advanced Theory of Statistics (Volume 3) Griffin (3rd
Edition)

[6] Krzanowski W J (1990) Principles of Multivariate Analysis Oxford University Press

[7] Lawley D N and Maxwell A E (1971) Factor Analysis as a Statistical Method Butterworths (2nd
Edition)

[8] Morrison D F (1967) Multivariate Statistical Methods McGraw-Hill
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GO3AAF — NAG Fortran Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

GO3AAF performs a principal component analysis on a data matrix; both the principal component
loadings and the principal component scores are returned.

2 Specification

SUBROUTINE GO3AAF(MATRIX, STD, WEIGHT, N, M, X, LDX, ISX, S, WT,

1 NVAR, E, LDE, P, LDP, V, LDV, WK, IFAIL)
INTEGER N, M, LDX, ISX(M), NVAR, LDE, LDP, LDV, IFAIL
real X(LDX,M), S(M), WT(x), E(LDE,6), P(LDP,NVAR),
1 V(LDV,NVAR), WK(NVAR+NVAR+5+(NVAR-1))
CHARACTER#1 MATRIX, STD, WEIGHT

3 Description

Let X be an n by p data matrix of n observations on p variables z,,z,,...,2, and let the p by p
variance-covariance matrix of z,,z,,...,z, be S. A vector a, of length p is found such that:

aT Sa, is maximized subject to ala, = 1.
P
The variable z; = E a,;z; 1s known as the first principal component and gives the linear combination of

i=1
p

the variables that gives the maximum variation. A second principal component, z, = Z a,;z;, is found

i=1

such that:
TS . . . d b‘ T _ d T —
a; Sa, is maximized subject to a;a, = 1 and a3 a; = 0.

This gives the linear combination of variables that is orthogonal to the first principal component that
gives the maximum variation. Further principal components are derived in a similar way.

The vectors a,,a,,...,a,, are the eigenvectors of the matrix S and associated with each eigenvector
is the eigenvalue, AZ. The value of 22/ Z/\f gives the proportion of variation explained by the ith
principal component. Alternatively the a;’s can be considered as the right singular vectors in a singular
value decomposition with singular values ); of the data matrix centred about its mean and scaled by

1/4/(n = 1), X,. This latter approach is used in GO3AAF, with

X, =VAP'
where A is a diagonal matrix with elements );, P’ is the p by p marix with columns ¢; and V is an n by
p matrix with V'V = I, which gives the principal component scores.

Principal component analysis is often used to reduce the dimension of a data set, replacing a large
number of correlated variables with a smaller number of orthogonal variables that still contain most of
the information in the original data set.

The choice of the number of dimensions required is usually based on the amount of variation accounted
for by the leading principal components. If k principal components are selected then a test of the equality
of the remaining p — k eigenvalues is

p 14
(n—<2p+5)/6){— > 1og<A?>+(p—k)log< > A?/(p—k))}

i=k+1 i=k+1
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which has, asymptotically, a x? distribution with %(p —k—1)(p — k + 2) degrees of freedom.

Equality of the remaining eigenvalues indicates that if any more principal components are to be considered
then they all should be considered.

Instead of the variance-covariance matrix the correlation matrix, the sums of squares and cross-products
matrix or a standardised sums of squares and cross-products matrix may be used. In the last case S is

1 1
replaced by 0~ 2S¢~ 2 for a diagonal matrix o with positive elements. If the correlation matrix is used
the x*? approximation for the statistic given above is not valid.

The principal component scores, F, are the values of the principal component variables for the
observations. These can be standardised so that the variance of these scores for each principal component
is 1.0 or equal to the corresponding eigenvalue.

Weights can be used with the analysis, in which case the matrix X is first centred about the weighted
means then each row is scaled by an amount ,/w;, where w; is the weight for the ith observation.

4 References
[1] Chatfield C and Collins A J (1980) Introduction to multivariate analysis. Chapman and Hall
[2] Cooley W C and Lohnes P R (1971) Multivariate data analysis. Wiley

[3] Hammarling S (1985) The Singular Value Decomposition in Multivariate Statistics Signum Newsl..
20 (3) 2-25

[4] Kendall M G and Stuart A (1979) The advanced theory of statistics (3 volumes). Griffin (4th
Edition)

[5] Morrison D F (1967) Multivariate statistical methods. McGraw-Hill

5 Parameters

1: MATRIX — CHARACTER*1 Input

On entry: indicates for which type of matrix the principal component analysis is to be carried out.
If MATRIX = ’C’, then it is for the correlation matrix.

If MATRIX =S, then it is for a standardised matrix, with standardisations given by S.

If MATRIX = "U’, then it is for the sums of squares and ‘cross-products matrix.

If MATRIX = "V’ then it is for the variance-covariance matrix.

Constraint: MATRIX =’C’,’S’, U’ or "V".

2: STD — CHARACTER*1 Input

On entry: indicates if the principal component scores are to be standardised.

If STD = ’S’, then the principal component scores are standardised so that F'F = I, i.e.,
F=X,PA '=V.

If STD = ’U’, then the principal component scores are unstandardised, i.e., F = X, P = VA.
If STD = Z’, then the principal component scores are standardised so that they have unit variance.

If STD = 'E’, then the principal component scores are standardised so that they have variance equal
to the corresponding eigenvalue.

Constraint: STD =E’,’S’, U’ or 'Z’.
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3:

10:

WEIGHT — CHARACTER*1 Input

On entry: indicates if weights are to be used.

If WEIGHT = U’ (Unweighted), then no weights are used.

If WEIGHT = "W’ (Weighted), then weights are used and must be supplied in WT.
Constraint: WEIGHT = "U’ or "W’.
N — INTEGER Input
On entry: the number of observations, n.
Constraint: N > 2.
M — INTEGER Input
On entry: the number of variables in the data matrix, m.
Constraint: M > 1.
X(LDX,M) — real array Input

On entry: X(i,j) must contain the ith observation for the jth variable, for i = 1,2,...,n;
j=12,...,m

LDX — INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which GO3AAF
is called.

Constraint: LDX > N.

ISX(M) — INTEGER array Input
On entry: ISX(j) indicates whether or not the jth variable is to be included in the analysis.

If ISX(j) > 0, then the variable contained in the jth column of X is included in the principal
component analysis, for j =1,2,...,m.

Constraint: 1SX(j) > 0 for NVAR values of j.

S(M) — real array Input/Output

On entry: the standardisations to be used, if any.

If MATRIX = ’S’, then the first m elements of S must contain the standardisation coefficients, the
diagonal elements of o.

Constraint: if ISX(j) > 0, then S(j) > 0.0, for j =1,2,...,m.
On ezit: if MATRIX = ’S’, then S is unchanged on exit.

If MATRIX = ’C’, then S contains the variances of the selected variables. S(j) contains the variance
of the variable in the jth column of X if ISX(j) > 0.

If MATRIX = ’U’ or ’V’, then S is not referenced.

WT(*) — real array Input

On entry: if WEIGHT = W, then the first n elements of WT must contain the weights to be used
in the principal component analysis.

If WT(:) = 0.0, then the ith observation is not included in the analysis. The effective number of
observations is the sum of the weights.

If WEIGHT = ’U’, then WT is not referenced and the effective number of observations is n.
Constraint: WT(7) > 0.0, for i = 1,2,...,n and the sum of weights > NVAR + 1.
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11:

12:

13:

14:

15:

16:

17:

18:

19:

NVAR — INTEGER Input

On entry: the number of variables in the principal component analysis, p.
Constraint: 1 < NVAR < min(N-1,M}).
E(LDE,6) — real array Output

On ezit: the statistics of the principal component analysis.

E(i,1), the eigenvalues associated with the tth principal component, A fori=1,2,...,p.

E(i,2), the proportion of variation explained by the ith principal component, for i = 1,2,...,p.
E(3,3), the cumulative proportion of variation explained by the first ith principal components, for
i=12,...,p.

E(i,4), the x? statistics, for i = 1,2,...,p.

E(4,5), the degrees of freedom for the x? statistics, for i = 1,2,...,p.

If MATRIX # ’C’, then E(i,6) contains significance level for the x? statistic, for i = 1,2,...,p.

If MATRIX = ’C’, then E(4,6) is returned as zero.

LDE — INTEGER Input

On entry: the first dimension of the array E as declared in the (sub)program from which GO3AAF
is called.

Constraint: LDE > NVAR.

P(LDP,NVAR) — real array Output

On exzit: the first NVAR columns of P contain the principal component loadings, a;. The jth column
of P contains the NVAR coefficients for the jth principal component.

LDP — INTEGER Input

On entry: the first dimension of the array P as declared in the (sub)program from which GO3AAF
is called.

Constraini: LDP > NVAR.
V(LDV,NVAR) — real array Output

On ezit: the first NVAR columns of V contain the principal component scores. The jth column of
V contains the N scores for the jth principal component.

If WEIGHT = "W’ then any rows for which WT(3) is zero will be set to zero.

LDV — INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which GO3AAF
is called.

Constraint: LDV > N.

WEK(NVAR+*NVAR+5%(NVAR—1)) — real array Workspace
IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, —1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On ezit: IFAIL = 0 unless the routine detects an error (see Section 6).
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6 Error Indicators and Warnings
If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors detected by the routine:
IFAIL =1

On entry, M < 1,
or N<2
or NVAR < 1,
or NVAR > M,
or NVAR > N,
or LDX < N,
or LDV <N,
or LDP < NVAR,
or LDE < NVAR,
or MATRIX #°’C’,’S’, ’U’ or 'V,
or STD #°S’,°’U’,’Z’ or 'E’,
or WEIGHT # U’ or 'W’.
IFAIL = 2
On entry, WEIGHT = W’ and a value of WT < 0.0.
IFAIL = 3

On entry, there are not NVAR values of ISX > 0,
or WEIGHT = W’ and the effective number of observations is less than NVAR + 1.

IFAIL = 4
On entry, S(j) < 0.0 for some j =1,2,...,m, when MATRIX = ’S’ and ISX(j) > 0.
IFAIL = 5

The singular value decomposition has failed to converge. See FO2WEF. This is an unlikley error
exit.

IFAIL = 6

All eigenvalues/singular values are zero. This will be caused by all the variables being constant.

7 Accuracy

As GO3AAF uses a singular value decomposition of the data matrix, it will be less affected by ill-
conditioned problems than traditional methods using the eigenvalue decomposition of the variance-
covariance matrix.

8 Further Comments

None.

9 Example

A data set is taken from Cooley and Lohnes [2], it consists of ten observations on three variables.
The unweighted principal components based on the variance-covariance matrix are computed and
unstandardised principal component scores requested.
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9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential

Introduction to this manual, the results produced may not be identical for all implementations.

*
*
*

20

40

60

80

GO3AAF.6

+

GO3AAF Example Program Text
Mark 17 Revised. NAG Copyright 1995.

. Parameters ..
INTEGER NMAX, MMAX
PARAMETER (NMAX=12,MMAX=3)
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOQUT=6)
.. Local Scalars ..
INTEGER I, IFAIL, J, M, N, NVAR
CHARACTER MATRIX, STD, WEIGHT
. Local Arrays ..
real E(MMAX,6), P(MMAX,MMAX), S(MMAX), V(NMAX,KMMAX),
WK (MMAX*MMAX+5* (MMAX-1)), WT(NMAX), X(NMAX,MMAX)
INTEGER ISX(MMAX)
.. External Subroutines ..
EXTERNAL GO3AAF

. Executable Statements ..
WRITE (NOUT,*) ’GO3AAF Example Program Results’
Skip heading in data file
READ (NIN,*)
READ (NIN,*) MATRIX, STD, WEIGHT, N, M
IF (N.LE.NMAX .AND. M.LE.MMAX) THEN
IF (WEIGHT.EQ.’U’ .OR. WEIGHT.EQ.’u’) THEN
DO20I =1, XN
READ (NIN,*) (X(I,J),J=1,M)
CONTINUE
ELSE
DO 40 I =1, N
READ (NIN,*) (X(I,J),J=1,M), WT(I)
CONTINUE
END IF
READ (NIN,*) (ISX(J),J=1,M), NVAR

IF (MATRIX.EQ.’S’ .OR. MATRIX.EQ.’s’) READ (NIN,#*) (S(J),J=1,M)

IFAIL = 0

CALL GO3AAF(MATRIX,STD,WEIGHT,N,M,X,NMAX,ISX,S,WT,NVAR,E,MMAX,

P,MMAX,V,NMAX,WK,IFAIL)

WRITE (NOUT,*)
WRITE (NOUT,*)
’Eigenvalues Percentage Cumulative Chisq

WRITE (NOUT,*) ° variation variation’

WRITE (NOUT,*)
DO 60 I = 1, NVAR
WRITE (NOUT,99999) (E(I,J),J=1,6)
CONTINUE
WRITE (NOUT,*)
WRITE (NOUT,*) ’'Eigenvalues’
WRITE (NOUT,*)
DO 80 I = 1, NVAR
WRITE (NOUT,99998) (P(I,J),J=1,NVAR)
CONTINUE
WRITE (NOUT,=*)
WRITE (NOUT,*) ’Principal component scores’

Sig’
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WRITE (NOUT,*)
DO 100 I =1, N
WRITE (NOUT,99997) I, (V(I,J),J=1,NVAR)
100 CONTINUE
END IF
STOP

99999 FORMAT (1X,F11.4,2F12.4,F10.4,F8.1,F8.4)
99998 FORMAT (1X,8F9.4)
99997 FORMAT (1X,I2,(8F9.3))

END

9.2 Example Data

GO3AAF Example Program Data
'V’ ’E’ ’U’ 10 3

o

N WO W
(=]

N OO WO N= 000w
O 0O 0O 00000 O0OOo

W N O N0 N
O OO O OO0 OO0 O
O OO O OO0 O0OO0OOo

9.3 Example Results

GO3AAF Example Program Results

Eigenvalues Percentage Cumulative Chisq DF Sig
variation variation

8.2739 0.6515 0.6515 8.6127 5.0 0.1255

3.6761 0.2895 0.9410 4.1183 2.0 0.1276

0.7499 0 7590 1.0000 0.0000 0.0 0.0000
Eigenvalues

0.1376 0.6990 0.7017
0.2505 0.6609 -0.7075
-0.9583 0.2731 -0.0842

Principal component scores

2.151 -0.173 -0.107
-3.804 -2.887 -0.510
-0.163 -0.987 -0.269
4.707 1.302 -0.652
.294 2.279 -0.449
-4.099 0.144 0.803
1.626 -2.232 -0.803
-2.114 3.2561 0.168
0.235 0.373 -0.275
.746  -1.069 2.094

© 0 N O O WN -
U
-

e
o
N
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GO3ACF — NAG Fortran Library Routine Document

Note: Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

GO3ACF performs a canonical variate (canonical discrimination) analysis.

2 Specification

SUBROUTINE GO3ACF(WEIGHT, N, M, X, LDX, ISX, NX, ING, NG, WT, NIG,

1 CVM, LDCVM, E, LDE, NCV, CVX, LDCVX, TOL,
2 IRANKX, WK, IWK, IFAIL)

INTEGER N, M, LDX, ISX(M), NX, ING(N), NG, NIG(NG),
1 LDCVM, LDE, NCV, LDCVX, IRANKX, IWK, IFAIL
real X(LDX,M), WT(x), CVM(LDCVM,NX), E(LDE,6),

1 CVX(LDCVX,NG—1), TOL, WK(IWK)
CHARACTER%*1 WEIGHT

3 Description

Let a sample of n observations on n, variables in a data matrix come from n, groups with n,,n,,...,n,_
observations in each group, Zni = n. Canonical variate analysis finds the linear combination of the
n, variables that maximizes the ratio of between-group to within-group variation. The variables formed,
the canonical variates, can be used to discriminate between groups.

The canonical variates can be calculated from the eigenvectors of the within group sums of squares and
cross-products matrix. However, GO3ACF calculates the canonical variates by means of a singular value
decomposition (S<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>